2-D affine generalized fractional Fourier transform
نویسندگان
چکیده
The 2-D Fourier transform has been generalized into the 2-D separable fractional Fourier transform (replaces 1-D Fourier transform by 1-D fractional Fourier transform for each variable) and the 2-D separable canonical transform (further replaces the fractional Fourier transform by canonical transform) in [3]. It also has been generalized into the 2-D unseparable fractional Fourier transform with 4 parameters in [6]. In this paper, we will introduce the 2-D affine generalized fractional Fourier transform (AGFFT). It has even further generalized these 2-D transforms. We will show it can deal with many problems that can’t be dealt by these 2-D transforms and extend their utility.
منابع مشابه
Two-dimensional affine generalized fractional Fourier transform
As the one-dimensional (1-D) Fourier transform can be extended into the 1-D fractional Fourier transform (FRFT), we can also generalize the two-dimensional (2-D) Fourier transform. Sahin et al. have generalized the 2-D Fourier transform into the 2-D separable FRFT (which replaces each variable 1-D Fourier transform by the 1-D FRFT, respectively) and 2D separable canonical transform (further rep...
متن کاملUncertainty Principle of the 2-D Affine Generalized Fractional Fourier Transform
The uncertainty principles of the 1-D fractional Fourier transform and the 1-D linear canonical transform have been derived. We extend the previous works and discuss the uncertainty principle for the two-dimensional affine generalized Fourier transform (2-D AGFFT). We find that derived uncertainty principle of the 2-D AGFFT can also be used for determining the uncertainty principles of many 2-D...
متن کاملClosed-form discrete fractional and affine Fourier transforms
The discrete fractional Fourier transform (DFRFT) is the generalization of discrete Fourier transform. Many types of DFRFT have been derived and are useful for signal processing applications. In this paper, we will introduce a new type of DFRFT, which are unitary, reversible, and flexible; in addition, the closed-form analytic expression can be obtained. It works in performance similar to the c...
متن کاملApplications on Generalized Two-Dimensional Fractional Sine Transform In the Range
Various transforms are employed for signal processing to obtain useful information, which is not explicitly available when the signal is in the time domain. Most of the real time signals such as speech, biomedical signals, etc., are non-stationary signals. The Fourier transform (FT), used for most of the signal processing applications, determines the frequency components present in the signal b...
متن کاملThermo-Viscoelastic Interaction Subjected to Fractional Fourier law with Three-Phase-Lag Effects
In this paper, a new mathematical model of a Kelvin-Voigt type thermo-visco-elastic, infinite thermally conducting medium has been considered in the context of a new consideration of heat conduction having a non-local fractional order due to the presence of periodically varying heat sources. Three-phase-lag thermoelastic model, Green Naghdi models II and III (i.e., the models which predicts the...
متن کامل